constructive algorithms flows graph matchings graphs implementation *2500

Please click on ads to support us..

C++ Code:

///Enta etfsh5t nseet el rank

#pragma GCC optimize("O3")
#pragma GCC optimize("unroll-loops")
#pragma GCC target("avx,avx2,fma")

#include "bits/stdc++.h"
#include <ext/pb_ds/assoc_container.hpp> // Common file
#include <ext/pb_ds/tree_policy.hpp> // Including tree_order_statistics_node_update

using namespace std;
using namespace __gnu_pbds;

template<typename T>
using ordered_set = tree<T, null_type, less<T>, rb_tree_tag,
        tree_order_statistics_node_update>;
#define pb push_back
#define F first
#define S second
#define f(i, a, b) for (int i = a; i < b; i++)
#define all(a) a.begin(), a.end()
#define rall(a) a.rbegin(), a.rend()
#define sz(x) (int)(x).size()
//#define mp(x, y) make_pair(x, y)
#define popCnt(x) (__builtin_popcountll(x))
#define int ll

using ll = long long;
using ull = unsigned long long;
using uint = uint32_t;
using ii = pair<int, int>;

const int N = 1e5 + 6, LG = 18, MOD = 1e9 + 7;
const long double PI = acos(-1);

const long double EPS = 1e-9;


int a[N], s[N];
int u[N], v[N];
int deg[N];
int n, m;

struct FlowEdge {
    int v, u;
    long long cap, flow = 0;

    FlowEdge(int v, int u, long long cap) : v(v), u(u), cap(cap) {}
};

struct Dinic {
    const long long flow_inf = 1e18;
    vector<FlowEdge> edges;
    vector<vector<int>> adj;
    int n, m = 0;
    int s, t;
    vector<int> level, ptr;
    queue<int> q;

    Dinic(int n, int s, int t) : n(n), s(s), t(t) {
        adj.resize(n);
        level.resize(n);
        ptr.resize(n);
    }

    void add_edge(int v, int u, long long cap) {
        edges.emplace_back(v, u, cap);
        edges.emplace_back(u, v, 0);
        adj[v].push_back(m);
        adj[u].push_back(m + 1);
        m += 2;
    }

    bool bfs() {
        while (!q.empty()) {
            int v = q.front();
            q.pop();
            for (int id: adj[v]) {
                if (edges[id].cap - edges[id].flow < 1)
                    continue;
                if (level[edges[id].u] != -1)
                    continue;
                level[edges[id].u] = level[v] + 1;
                q.push(edges[id].u);
            }
        }
        return level[t] != -1;
    }

    long long dfs(int v, long long pushed) {
        if (pushed == 0)
            return 0;
        if (v == t)
            return pushed;
        for (int &cid = ptr[v]; cid < (int) adj[v].size(); cid++) {
            int id = adj[v][cid];
            int u = edges[id].u;
            if (level[v] + 1 != level[u] || edges[id].cap - edges[id].flow < 1)
                continue;
            long long tr = dfs(u, min(pushed, edges[id].cap - edges[id].flow));
            if (tr == 0)
                continue;
            edges[id].flow += tr;
            edges[id ^ 1].flow -= tr;
            return tr;
        }
        return 0;
    }

    long long flow() {
        long long f = 0;
        while (true) {
            fill(level.begin(), level.end(), -1);
            level[s] = 0;
            q.push(s);
            if (!bfs())
                break;
            fill(ptr.begin(), ptr.end(), 0);
            while (long long pushed = dfs(s, flow_inf)) {
                f += pushed;
            }
        }
        return f;
    }
};

void doWork() {

    cin >> n >> m;
    Dinic flw(n + m + 5, 0, n + m + 1);
    f(i, 1, n + 1) cin >> s[i];
    f(i, 1, n + 1) cin >> a[i];
    f(i, 1, m + 1) {
        cin >> u[i] >> v[i];
        deg[u[i]] -= 1;
        deg[v[i]] -= 1;
        flw.add_edge(0, i, 1);
        flw.add_edge(i, m + u[i], 1);
        flw.add_edge(i, m + v[i], 1);
    }

    int totFlow = 0;
    f(i, 1, n + 1)if (s[i] == 1) {
            if ((a[i] - deg[i]) & 1) {
                cout << "NO\n";
                return;
            }
            if (a[i] < deg[i]) {
                cout << "NO\n";
                return;
            }
            flw.add_edge(m + i, n + m + 1, (a[i] - deg[i]) / 2);
            totFlow += (a[i] - deg[i]) / 2;
        }

    if (flw.flow() != totFlow) {
        cout << "NO\n";
        return;
    }
    f(i, 1, n + 1)if (!s[i])flw.add_edge(m + i, n + m + 1, 1e9);
    if (totFlow + flw.flow() != m) {
        cout << "NO\n";
        return;
    }
    cout << "YES\n";
    f(i, 1, m + 1) {
        int go;
        for (auto e: flw.adj[i])
            if (flw.edges[e].cap == flw.edges[e].flow && flw.edges[e].u != 0) {
                go = flw.edges[e].u - m;
                break;
            }
        if (u[i] == go)
            swap(u[i], v[i]);
        cout << u[i] << ' ' << v[i] << '\n';
    }


}

int32_t main() {
#ifdef ONLINE_JUDGE
    ios_base::sync_with_stdio(0);
    cin.tie(0);
#endif // ONLINE_JUDGE

    int t = 1;
//    cin >> t;
    while (t--)
        doWork();
    return 0;
}


Comments

Submit
0 Comments
More Questions

17. Letter Combinations of a Phone Number
5. Longest Palindromic Substring
3. Longest Substring Without Repeating Characters
1312. Minimum Insertion Steps to Make a String Palindrome
1092. Shortest Common Supersequence
1044. Longest Duplicate Substring
1032. Stream of Characters
987. Vertical Order Traversal of a Binary Tree
952. Largest Component Size by Common Factor
212. Word Search II
174. Dungeon Game
127. Word Ladder
123. Best Time to Buy and Sell Stock III
85. Maximal Rectangle
84. Largest Rectangle in Histogram
60. Permutation Sequence
42. Trapping Rain Water
32. Longest Valid Parentheses
Cutting a material
Bubble Sort
Number of triangles
AND path in a binary tree
Factorial equations
Removal of vertices
Happy segments
Cyclic shifts
Zoos
Build a graph
Almost correct bracket sequence
Count of integers